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Abstract
We present a microscopic theoretical description of spatially resolved
photoluminescence in GaAs quantum wells with interface roughness. The
theory derives the kinetic equations using the excitonic wavefunctions obtained
by solving numerically the effective Schrödinger equation for the excitonic
centre of mass motion in the presence of disorder. The kinetic equations
describe acoustic phonon scattering, radiative decay, and inhomogeneous
sample excitation and/or light detection. The influence of disorder, temperature,
and spatial resolution on the image formation is analysed with emphasis
on the role of different interface textures. In particular, we consider two
samples characterized by effective disorder potentials with different correlation
lengths. Numerically calculated two-dimensional images agree with images
from spatially resolved photoluminescence experiments and put forward the
potential of the method for the understanding of near-field light emission from
semiconductor quantum structures.

1. Introduction

Scanning near-field optical microscopy (SNOM) has opened the possibility for studying
numerous optical phenomena with resolution well below the diffraction limit [1]. Since in
conventional (far-field) optical spectroscopy the light field is essentially constant in amplitude
and phase over the spatial extension of the relevant quantum mechanical states, one can measure
only an average signal originating from the relatively large surface area determined by the
illuminating spot. On the contrary, near-field microscopy and spectroscopy techniques have
enormous potential for optical probing of nanostructured materials and are able to probe the
morphology and the spatial distribution of optically active quantum states. Among the optical
characterization and analysis methods, photoluminescence (PL) is one of the most useful
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Figure 1. Schematic view of the exciton in a ternary QW with rough interfaces.

and effective means to investigate the optical properties of optically active nanostructured
materials. While PL and photoluminescence excitation (PLE) spectroscopy are widely used
spectroscopic tools for the optical characterization of semiconductor nanostructures, theoretical
simulations generally focus on calculations of local absorption [2–6]. In high quality
quantum wells (QWs), electrons relax predominantly by scattering with phonons in a time
significantly shorter than the radiative lifetime, thus at low temperature we can see a quite good
correspondence between absorption and PLE measurements [7]. However for disordered QWs
this correspondence generally breaks down [8]. Disorder in semiconductor heterostructures
(due to alloy fluctuations in ternary compounds or geometry) is always present although
not always undesired. The nature of QW interfaces can be complex. Entropy and growth
kinetic reasons favour irregular shapes and fuzzy boundaries, whereas energetic arguments
favour regular compact shapes and straight boundaries [9]. Moreover, the dynamical growth
conditions determine regimes of interfacial texture that affect the nature of exciton localization.
Layer-by-layer growth determines an interface microroughness with weak short-range potential
fluctuations on a length scale much smaller than the exciton radius [10]. By contrast, the
Stranski–Krastanov method or growth with interruption of growth [11] produces QD regions
where the lateral extent of the confining potential is larger than the exciton diameter. In some
cases, disorder with correlation length larger than the Bohr radius is intentionally provoked at
the QW interfaces, in order to obtain high quality quantum dots (QDs) [12, 13].

The theory of spatially resolved PL, here presented and applied, includes light
quantization, acoustic phonon scattering, and inhomogeneous sample excitation and/or light
detection. This framework also allows the description of PL and PLE spectroscopy, in which
the excitation and detection energies can all be scanned independently. Moreover, it is possible
to model the effects of the illumination and collection spatial resolutions. In particular we
calculate spatially resolved PL for two samples, characterized by a different type of interface
roughness. Each sample is constituted by a GaAs QW in between AlxGa1−xAs barriers (see
figure 1). We present results of absorption, PL and spatially resolved PL in the collection mode
configuration for spatial resolutions ranging from 30 to 150 nm. The numerical results here
presented clearly evidence the influence of exciton localization due to interface roughness with
different length scales in determining the near-field PL images. We also analyse the influence
of temperature that plays a relevant role by tuning the competition between radiative and non-
radiative scattering.

2. Theory

The optical properties of semiconductor quantum structures are mainly determined by the
conduction band and the uppermost valence subbands. To make the situation as simple as
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possible we assume a non-degenerate situation, taking into account only a valence and a
conduction subband. Furthermore, the subbands are assumed to be isotropic and parabolic
with the band minimum localized at the zone centre. The overall effects of the band structure,
in particular the fact that the carrier experiences the periodic potential instead of moving in
the vacuum, are embodied in the use of an effective mass. Hence the electron energies and
wavefunctions can be calculated in the effective mass approximation.

One of the most important problems connected with the growth of heterostructures
is structural disorder. In addition to impurities, lattice imperfections, etc, which are also
present in these homogeneous bulk crystals, semiconductor quantum structures additionally
exhibit interface imperfections which can involve different components with different lateral
length scales. Since the disorder in quantum wells determines the breaking of translation
symmetry along the free propagation plane of the system, it is convenient to adopt a real-
space representation. In reasonably good quality quantum structures the amplitude of the
confinement energy fluctuations is typically one order of magnitude smaller than the exciton
binding energy [14]. In this limit the electron–hole hydrogen-like relative motion may be
assumed to be undistorted by disorder. Disorder significantly affects the centre of mass (COM)
motion through an effective potential V (R), where R indicates the COM vector lying along the
well free plane. Owing to these approximations, the exciton wavefunction can be factorized
as [14]

�eh
α (ze, zh, ρ,R) = ue(ze)uh(zh)φ1s(ρ)ψα(R), (1)

where φ1s(ρ) describes the unperturbed electron–hole (eh) relative motion (ρ being the relative
in-plane eh coordinate) corresponding to the lowest exciton transition and ue(h)(ze(h)) is the
confinement function, with ze(h) being the electron (hole) coordinate along the growth direction.
The wavefunctions ψα(R) are solutions of the exciton Schrödinger equation written for the
COM motion: (

− h̄2∇2

2M
+ V (R)

)
ψα(R) = εαψα(R), (2)

where M = m∗
e + m∗

h is the exciton kinetic mass (m∗
e and m∗

h are the effective masses of the
electron and the hole).

In a typical luminescence experiment a non-equilibrium distribution of electron–hole (e–h)
pairs is initially excited. These optically generated pairs may recombine emitting light or can
be scattered inelastically non-radiatively (as a consequence of electron–phonon interaction) to
other energy levels. This competition between radiative emission and non-radiative scattering
ultimately determines the photoluminescence properties of the system. The microscopic
theoretical analysis of this process requires the inclusion of both spontaneous emission and
exciton–phonon interaction. Here we also include the description of inhomogeneous sample
excitation and/or light detection.

The positive frequency components of the operator describing the signal that can be
detected by a general near-field set-up can be expressed as [15, 16]

Ŝ+
t = Â+

bg + Ŝ+, (3)

where Â+
bg is the elastic background signal, largely uniform along the xy plane; this term is

proportional to the input electric-field operator. Ŝ+ is related to the sample polarization density
operator P̂+(r),

Ŝ+ = A
∫

dr P̂+(r) · Eout(r), (4)
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where A is a complex constant depending on the impedance of the material constituting the
tip [15] and Eout(r) is the signal mode delivered by the tip. The interband polarization density
operator is given by

P̂+(r) =
∑

eh

µeh ĉe(r)d̂h(r), (5)

where µeh is the interband dipole moment and ĉe(r), d̂h(r) are the electron and hole destruction
operators in the r-space representation. Photoluminescence can be defined as the incoherent
part of the emitted light intensity. The PL that can be measured by a photodetector after
the collection set-up (broadband detection) is proportional to I = 〈Ŝ−, Ŝ+〉, (with 〈Â, B̂〉 ≡
〈Â B̂〉 − 〈Â〉〈B̂〉). Analogously the steady-state spectrum of incoherent light emitted by the
semiconductor quantum structure and detected by the SNOM set-up can be expressed as

IPL(ωout) = 1

π

∫ ∞

0
dτ 〈Ŝ−(0), Ŝ+(τ )〉eiωdτ . (6)

The polarization density operator can be expressed in terms of exciton operators as

P̂+(r) = µeh f (z)�eh
α (ρ = 0,R)B̂α (7)

where f (z) = ue(z)uh(z) is the product of the electron and hole envelope functions along
the confinement direction (the growth axis) and the operator B̂†

α creates an exciton state (one
electron–hole pair) B̂†

α|0〉 ≡ |E1,α〉 with energy ω1,α .
The dynamics controlled truncation scheme [17] provides an upper limit to the number

of electron–hole pairs to be included for the dynamics description of the interacting electron
system, depending on the excitation density. States with only one electron–hole pair (exciton)
are sufficient to describe the system dynamics at low excitation densities. In this regime the
following relation can be assumed:

B̂α � |0〉〈E1,α|, (8)

and it can be shown that the operators B̂α behave as boson operators. Including only the
exciton subspace and using equation (8), the Hamiltonian determining the dynamics of the
semiconductor system is given by the following three contributions:

Ĥ = Ĥ0 + ĤI + Ĥs , (9)

where the first term is the bare electronic Hamiltonian of the semiconductor system Ĥ0 =∑
α h̄ωα B̂†

α B̂α. The interaction of the semiconductor with the light field (in the usual rotating
wave approximation) can be written as

ĤI = −
∫

d3r Ê−(r) · P̂+(r)+ H.c. (10)

We separate the field operator into a classical contribution Ein(r) describing the (possibly
inhomogeneous) exciting field and into a fluctuating part Ê−(r) (the one determining the
spontaneous emission) that can be expanded in terms of annihilation photon operators. Finally,
Ĥs describes inelastic scattering due to the interaction of excitons with the phonon bath:

Ĥs =
∑
α,β,q

tq
α,β (b̂q + b̂†

−q)B̂
†
α B̂β. (11)

These terms produce scattering between different exciton states and dephasing. For the
lowest exciton states at low temperature, scattering with acoustic phonons is in most cases
the dominant process. In particular, at low temperature interaction with optical phonons is
efficient at excitations above the bandgap only, because only in this case are total energy and
momentum conserved for downward transitions [14, 18]. Therefore, we will include only the
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contribution due to acoustic phonons in subsequent numerical calculations. b̂q is the Bose
annihilation operator for a phonon with wavevector q. The scattering matrix elements depend
on the lattice deformation potentials and the overlap between the exciton states. The explicit
expression for tq

α,β can be found elsewhere [19].
The relaxation process in the low-excitation limit can be discussed in terms of kinetic

equations for the exciton density matrix. Diagonal terms of the exciton density matrix
Nα = 〈B̂†

α B̂α〉 can be derived starting from the Heisenberg equation of motion for the exciton
operators

−ih̄∂t B̂†
α(t) = [Ĥ, B̂†

α(t)] (12)

under the influence of Ĥ.
The main approximations are the neglect of possible coherent phonon states and of

memory effects induced by the photon and phonon fields [14]. The resulting kinetic equations
that include a spatially inhomogeneous (illumination-mode) input light field of given frequency
ωin as input are

∂t Nα = Gα (ωin)+
∑
β

γα←βNβ − 2αNα, (13)

where 2α = rα + ∑
β γβ←α is the total out-scattering rate, rα is the rate for spontaneous

emission proportional to the exciton oscillator strength: rα = r0|
∫

d2Rψα(R)|2, and γβ←α are
the resulting phonon-assisted scattering rates [14], given by

γβ←α = 2π

h̄

∑
q

((
nq + 1

)
δ
(
εβ + h̄ωq − εα

) + nqδ
(
εβ − h̄ωq − εα

)) |tq
βα|2. (14)

Here we assumed that the tip–sample interaction does not alter the radiative decay rates. In
this equation the generation term that describes the specific experimental excitation conditions
depends on the spatial overlap between the illuminating beam and the exciton wavefunctions
corresponding to exciton levels resonant with the input light [16]:

Gα = r0

∣∣oin
α

∣∣2 Lα(ωin) (15)

with πLα(ω) = /[(ω − ωα)
2 + 2] and

oin
α =

∫
d2R Ẽin(R)ψα (R) (16)

where Ẽin(R) = ∫
Ein(r) f (z) dz. This term is proportional to the contribution of an α-exciton

level to total absorption under local illumination. In the subsequent numerical calculations,
concerning the illumination mode, we will assume an input light field with a given Gaussian
profile centred around the tip position: Ẽin(R) = E0

ing(R− R̄). In this case the generation term
becomes a function of the beam position and shape (spatial resolution). We observe that also
at steady state equation (13) can give rise to highly non-equilibrium exciton densities. Non-
equilibrium here arises from both spontaneous emission that prevents full thermalization and
from the eventual local excitation described by the generation terms.

Once the exciton densities have been derived, the frequency integrated PL can be readily
obtained.

I = r0

∑
α

∣∣oout
α

∣∣2
Nα, (17)

where oout
α analogously to oin

α contains the overlap of the exciton wavefunctions with the signal
mode Ẽout(R) delivered by the tip (collection mode) and is given by

oout
α =

∫
d2R Ẽout(R)ψα(R). (18)
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Figure 2. (a) Specific realization of disordered potential obtained summing up two different
contributions. (b) Specific realization of disordered potential obtained considering only the
contribution with a small correlation length.

According to the quantum regression theorem (see e.g. [20]), 〈Ŝ−(0) Ŝ+(τ )〉 has the same
dynamics as 〈Ŝ+(τ )〉 (proportional to the exciton operator), but with 〈Ŝ−(0) Ŝ+(0)〉 as initial
condition. Following this procedure we obtain the spatially and spectrally resolved PL
intensity:

IPL(ωout) = r0

∑
α

∣∣oout
α

∣∣2 Lα(ωout) Nα. (19)

3. Numerical results

We consider a Gaussian stochastic (zero-mean) potential with statistical properties determined
by the autocorrelation function [21] A(R − R′) = 〈W (R)W (R′)〉, with A(R) = v2

0e−|R|2/2ξ 2

where 〈· · ·〉 denotes an ensemble average over random configurations, v0 is the amplitude, and
ξ is the spatial correlation length characterizing the potential fluctuations. We exploit numerical
calculations for two samples characterized by two different kinds of interface roughness, taking
into account two different types of disorder occurring in the real structures during the growth
process. The samples under consideration are both GaAs single QWs embedded in AlAs
barriers. In the first case (sample (a)) we consider at each interface the formation of monolayer
islands on the respective surfaces of size larger than the exciton radius (see figure 2(a)). This
type of disorder is experimentally achieved by growing QWs with growth interruption on both
interfaces. We model this kind of island-like disordered potential V (R) summing up two
different stochastic potentials W (R). The first contribution W1(R) aims to model the monolayer
islands and is obtained using values of ξ = 16 nm and v0 = 2.0 meV; the second contribution
W2(R) aims to model the background disorder and is obtained using values of ξ = 7 nm and
v0 = 0.2 meV. The specific realization of the so obtained effective potential (Sa) is shown in
figure 2(a). It is worth noting that even in the case of abrupt profiles of fluctuations the resulting
effective potential is a smoother function deriving from the convolution of the potential with
the 1s exciton wavefunction [22]. The second effective potential (Sb) used for our subsequent
calculations models a sample grown without growth interruptions at interfaces. It is obtained
by employing only the disorder potential with smaller correlation length ξ = 7 nm and an
amplitude v0 = 2.2 meV, equal to the sum of the amplitudes used in the previous case for
reasons of comparison of the resulting PL spectra. Sb is shown in figure 2(b). However, in
both cases the simulation of interface roughness effects on PL and absorption spectra is based
on the concept of well-width fluctuations. Indeed, the statistical properties of an interface are
usually characterized by two length parameters: the thickness fluctuation and the lateral (in-
plane) correlation length [23], as can be observed by direct morphological analysis done, for
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Figure 3. Far-field absorption and photoluminescence spectra for the two samples in figure 2. The
temperature of the samples is T = 10 K.

instance, with cross-sectional scanning tunnel microscopy [24], scattering ellipsometry [25],
and x-ray reflection measurements [26, 27].

Calculations are carried out in real space mapping on a fine mesh of points the Hamiltonian
Ĥ (see equation (9)), which is then diagonalized in order to obtain eigenvalues and eigenvectors.
An exciton kinetic mass of m = 0.25 m0, typical for AlAs/GaAs QWs, has been used. The
spectra have been calculated by considering a square region of 540 nm by 540 nm which has
been reproduced by a 90 × 90 mesh. Periodic boundary conditions have been adopted.

SNOM PL spectra are very sensitive to the mode of operation [16]. In the experimental
set-up that we model, calculations are performed in the collection mode configuration, where
the samples are illuminated in far field and the resulting luminescence is collected locally using
the fibre probe. Figure 1 shows a schematic view of the exciton in the ternary AlAs/GaAs
QW for Sa and the experimental set-up for the collection mode configuration. Before showing
PL images, in figure 3 we report for reference far-field absorption and PL spectra calculated
at the temperature of 10 K for the two samples. The obtained far-field spectra are far from
being a smooth band. This originates from the reduced number of emitting centres owing to
the smallness of the sample employed for simulations (540 × 540 nm2). For both samples
two distinct regions related to the effective mobility edge for exciton relaxation [28] can
be observed. At lower energy we can distinguish generally sharper distinct peaks, while at
higher energy peaks are generally larger due to a more effective phonon-induced scattering.
We also observe a noticeable difference between PL and absorption spectra for both samples,
originating from the fact that for states at high energy, relaxation due to phonon scattering is
much more rapid then the radiative decay rate [29]. Figure 4 displays energy-integrated PL
images obtained after uniform illumination of the sample at energy ωI = 1 meV (the zero of
energy is fixed at the energy of the 1s exciton in the absence of disorder) and locally collecting
the emitted light with spatial resolution FWHM = 30 nm at different temperatures.
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Figure 4. Energy-integrated PL images obtained after uniform illumination of the sample shown in
figure 2(a) at energy ωI = 1 meV and collecting locally the emitted light with a spatial resolution
of 30 nm at six different temperatures.

It is worth noting that the energy integrated excitonic local density of states does not
depend on position. So the observed emitting structures are a direct consequence of the
increasing ratio between radiative and non-radiative scattering rates for exciton states localized
at the potential minima (compare e.g. images of figure 2(a) with figure 4). As the temperature
of the structure is lowered, a transition from a broad and fairly continuous PL to an intense
set of a few spatially localized luminescence centres can be observed. In particular, at low
temperature emission originates mainly from the potential minima and gives information on
the potential profile of the sample (see figures 2(a) and 4). Such a localization of light emission
has been observed in measurements of low-temperature spatially resolved PL [30–32]. Another
interesting feature is the non-monotonic brightness of some luminescence centres when the
temperature is increased (see e.g. the location indicated by an arrow in the image at 30 K
in figure 4). When temperature increases, excitons can overcome shallow local minima by
thermal activation and fall into still deeper states. This mechanism is also at the basis of
the interpretation of the observed non-monotonic Stokes shift of PL spectra in dependence
on temperature [33–37]. The spatially resolved effect here observed can be regarded as the
microscopic evidence of this mechanism and supports this interpretation.

Figure 5 displays energy integrated spatially resolved photoluminescence obtained for two
different temperatures of Sa (T = 4 and 40 K) and collecting the emitted light at different
spatial resolutions. The images calculated using a full width at half maximum (FWHM) of
30 nm give information on the spatial extension of the quantum states of spatially localized
luminescence centres and partially determine their inner structure. In order to investigate the
impact that spatial resolution may have on the local spectra, we present the photoluminescence
spectrum of Sa for three different values of FWHM. This behaviour is not merely an average
effect but it also originates from spatial interference of the corresponding quantum states due
to the nonlocal character of light–matter interaction in semiconductors.

It can be instructive to better understand the importance of the specific realization of the
potential to the luminescence images to compare early results with those obtained for Sb,
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Figure 5. Energy integrated spatially resolved photoluminescence when sample (a) in figure 2 has
a temperature of T = 4 and 40 K for different spatial resolutions.

characterized by white-noise-like disorder with potential fluctuations at scale length of the
order of magnitude of the exciton Bohr radius. In this case the spatial resolution used for the
simulation is too low in order to obtain information about the potential. We also observe that
such a type of disorder is not able to confine the excitons in the single minima of the potential
so we expect to obtain information on the spatial extension of the excitonic quantum states and
partially determine their inner structure. Figure 6 shows energy-integrated images obtained for
Sb in collection mode configuration. As the temperature of the structure is lowered, a transition
from a broad and fairly continuous PL to less continuous luminescence centres can be observed
but, as expected, at low temperature emission does not originate exclusively from the potential
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Figure 6. Energy-integrated PL images obtained after uniform illumination of the sample shown in
figure 2(b) at energy ωI = 1 meV and collecting locally the emitted light with a spatial resolution
of 30 nm at six different temperatures.

minima as happened in sample Sa . The greater randomness of the disorder in the structure gives
rise to a loss of information on the potential profile (compare images of figures 2(b) and 5). This
is mainly due to the fact that the greater spatial resolution adopted (FWHM 30 nm) is larger
than the potential fluctuations. This leads to an averaging process in optical response, as can
be seen by comparing figures 4 and 6 with two images of potentials Sa and Sb. Moreover,
the rapid fluctuations of the potential give rise to an Anderson-like localization of excitons
of different nature from localization due to quantum confinement of excitons in the potential
minima observed in Sa . We also observe that, in analogy to what happens for Sa , increasing
temperature, excitons are thermally activated and fall down in still deeper states. Also for Sb

we observe a non-monotonic brightness of some luminescence centres when the temperature is
increased (see e.g. the location indicated by an arrow in the image at 30 K in figure 6).

Figure 7 displays energy integrated spatially resolved photoluminescence obtained for two
different temperatures of Sb (T = 4 and 40 K) and collecting the emitted light at different
spatial resolutions. We note that the behaviour is qualitatively similar to that of Sa giving, at
a FWHM of 30 nm resolution, information on the spatial extension of the quantum states of
spatially localized luminescence centres, but at high values of FWHM we can observe a more
negligible effect of the temperature on PL spectra.

We conclude that for Sa the enhancement of spatial resolution up to 30 nm is crucial to
map both the real-space distribution of eigenstates within QDs and the potential profile; instead
for Sb it is not possible to obtain information about the potential but it is still possible to map
the excitonic eigenfunctions.

4. Conclusion

In this paper we have presented numerical calculations of spatially resolved photoluminescence
in QWs with interface roughness under steady-state conditions. We have modelled two GaAs
single QWs embedded in AlAs barriers obtained with or without growth interruption. We
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Figure 7. Energy integrated spatially resolved photoluminescence when sample (b) in figure 2 has
a temperature of T = 4 and 40 K for different spatial resolutions.

have focused on exciton localization related to interface roughness. Moreover, we have studied
the effect of temperature and of spatial resolution on the exciton photoluminescence images
obtained after uniform illumination of the sample and local collection of the emitted light.
The direct comparison of local spectra obtained with two realized disorder potentials yields
characteristic signatures and puts forward the correlation between structural disorder, sample
temperature and spatial resolution on near-field PL images. Also, our computational tool is
suitable for importing any kind of numerically modelled disordered potential, so giving the
opportunity to perform future calculations using more and more realistic models. Finally, it is
worthy of note that the theory here presented can be applied to study photosensitive quantum
systems, of great topicality.
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